
REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average -1 hour per response, including the time for reviewing instructions, searching existing data sources 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
?n->n;0n?lo'i0ninl'c , «9 SU9?.es,.'onf. ,or reduoin9 tne burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports 
(0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be 
subject to any penalty for failing to comply, with a collection of information if it does not display a currently valid OMB control number 
PLEASE DO MOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYYj 

15-06-2004 
2.  REPORT TYPE 

Reprint 
4. TITLE AND SUBTITLE 
Estimating the amplitude scintillation index from sparsely sampled phase 
screen data 

6. AUTHOR(S) 
T. L. Beach 
T. R. Pedersen 
M.J. Strks 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Air Force Research Laboratory/VSBXI 
29 Randolph Road 
Hanscom AFB, MA 01731-3010 

3. DATES COVERED (From - To) 

5a.  CONTRACT NUMBER 

5b.  GRANT NUMBER 

5c.  PROGRAM ELEMENT NUMBER 
61102F 

5d.  PROJECT NUMBER 
2311 

5e. TASK NUMBER 
RS 

5f. WORK UNIT NUMBER 
Al 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFRL-VS-HA-TR-2004-1203 

10. SPONSOR/MONITOR'S ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

13. SUPPLEMENTARY NOTES       " —  
Reprinted from Radio Science, Voil. 39, RS5001, doi: 10.1029/2002RS002792, 2004 

14. ABSTRACT ~ ~ '~ —~*— '    "   '   "  

Phase screen techniques are commonly used to model scintillation of radio signals passing through a disturbed ionosphere, but 
observational phase or in situ density from both archival and ral-time sources is often sampled at rates well below the resolution 
desired. Previous phase screen resolution criteria do not address the computation of the amplitude scintillation index (S4), which is 
widely used m scintillation monitoring systems, for practical applications that rely on coarsely sampled phase data. We investigate 
the accuracy of S4 estimates from sparsely proulated one-dimensional phase screen models through systematic removal of samples 
from high-resolution discrete phase screen models in novel numerical experiments. We also provide analytic approximation for the 
wek-scatter case and study the effects of antialias filtering. This "subsampling" analysis shows that 2-5 samples per Fresnel radius 
(rfr) are usually sufficient to compute S4 to within 90% of its true value, depending on the form of the phase spectral density 
function (SDF) and the strength of scattering. We make initial application of the subsampling techniques to data-based phase 
screens for studying equatorial ionospheric scintillation with generally satisfactory results. Finally, we outline the use of the 
techniques developed in this paper to other practical problems, including SDF determination and computing irradiance patterns. 
15. SUBJECT TERMS "   ^ 6 K  
Scatterina and diffraction Equatorial ionosphere Ionospheric irregularities       « Wave propagation 

Space and satellite communications       Phase screen Scintillation 

16. SECURITY CLASSIFICATION OF: 
a.  REPORT 

UNCL 
b. ABSTRACT 

UNCL 
c. THIS PAGE 

UNCL 

17. LIMITATION OF 
ABSTRACT 

UNL 

18. NUMBER 
OF 
PAGES 

19a. NAME OF RESPONSIBLE PERSON 
Theodore L. Beach 

19b. TELEPHONE NUMBER (Include area code) 
781 377-8767 

Standard Form 298 (Rev. 8/98) 
Prescribed by ANSI Std. Z39.18 



AFRL-VS-HA-TR-2004-1203 

RADIO SCIENCE, VOL. 39, RS5001, doi:10.1029/2002RS002792, 2004 

Estimating the amplitude scintillation index from sparsely 
sampled phase screen data 

T. L. Beach, T. R. Pedersen, and M. J. Starks 
Air Force Research Laboratory, Space Vehicles Directorate, Hanscom Air Force Base, 
Massachusetts, USA 

S.-Y. Su 
Institute of Space Science and Center for Space and Remote Sensing Research, 
National Central University, Chung-Li, Taiwan 

Received 4 October 2002; revised 1 June 2004; accepted 15 June 2004; published 1 September 2004. - - - - 

[I]   Phase screen techniques are commonly used to model scintillation of radio signals 
passing through a disturbed ionosphere, but observational phase or in situ density from 
both archival and real-time sources is often sampled at rates well below the resolution 
desired for input to such models. Previous phase screen resolution criteria do not address 
the computation of the amplitude scintillation index (S4), which is widely used in 
scintillation monitoring systems, for practical applications that rely on coarsely sampled 
phase data. We investigate the accuracy of S4 estimates from sparsely populated 
one-dimensional phase screen models through systematic removal of samples from 
high-resolution discrete phase screen models in novel numerical experiments. We also 
provide analytic approximations for the weak-scatter case and study the effects of antialias 
filtering. This "subsampling" analysis shows that 2-5 samples per Fresnel radius (rF) are 
usually sufficient to compute S4 to within 90% of its true value, depending on the form 
of the phase spectral density function (SDF) and the strength of scattering. We make 
initial application of the subsampling techniques to data-based phase screens for studying 
equatorial ionospheric scintillation with generally satisfactory results. Finally, we outline 
the use of the techniques developed in this paper to other practical problems, including 
SDF determination and computing irradiance patterns.      INDEX TERMS: 0669 Electromagnetics: 
Scattering and diffraction; 2415 Ionosphere: Equatorial ionosphere; 2439 Ionosphere: Ionospheric 
irregularities; 2487 Ionosphere: Wave propagation (6934); 6979 Radio Science: Space and satellite 
communication; KEYWORDS: phase screen, scintillation, ionosphere 

Citation:   Beach, T. L., T. R. Pedersen, M. J. Starks, and S.-Y. Su (2004), Estimating the amplitude scintillation index from 
sparsely sampled phase screen data, Radio Sei., 39, RS5001, doi:10.1029/2002RS002792. 

1.   Introduction 1982], where the ionosphere is modeled as a collection 
of changes in signal phase at each point along the 

[2] Radio signals that propagate through regions of incident radio wave front. Several difficulties arise in 
irregular plasma density experience perturbations in using phase screens to model specific ionospheric con- 
amplitude and phase, i.e., scintillation. The strength of ditions based on observational data. For example, infer- 
tile amplitude fluctuations at a given signal frequency mation related to phase is typically available in only one 
can often be measured directly, but to estimate the dimension, whether in situ samples of plasma density 
corresponding amplitude fluctuations at other, particu- along a spacecraft track [Wernik et al, 1980; Franke et 
larly lower, frequencies one must utilize the phase of the al, 1984; Costa and Basu, 2002] or time series of phase 
received signal. The most common method of modeling measurements from a receiver [Beach andKintner, 1999; 
ionospheric scintillation is the phase screen [e.g., Rino, Bhattacharyya et al, 2000; Sokolovskiy et al, 2002]. 

Another obstacle, and the focus of this paper, is the 
Copyright 2004 by the American Geophysical Union. necessarily finite and often poor sampling resolution of 
0048-6604/04/2002RS002792S 11.00 the observational data. 
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[3] Here we investigate the practical problem of 
estimating the amplitude scintillation index, S4, from 
sparsely sampled data for a one-dimensional (1-D) phase 
screen model, a case where the model can be realistically 
populated by 1-D observations under restricted condi- 
tions. Unlike previous analyses of phase screen data 
sampling and grid resolution [Buckley, 1975; Knepp, 
1983; Coles et al, 1995, and references therein] we do 
not concentrate on the best possible replication of the 
field in the observation plane but rather on the amplitude 
scintillation index itself. We present analysis based on 
randomly generated screens subsampled at various reso- 
lutions to find the largest sample spacing that accurately 
reproduces the amplitude scintillation index. We also 
describe subsampling curves useful for estimating S4 and 
develop analytic expressions for these curves in the weak 
scattering regime. Finally, we apply the analysis tech- 
nique to in situ plasma density measurements and 
ground-based phase measurements in the equatorial 
ionosphere, where the symmetry imposed by the nearly 
horizontal magnetic field allows irregularities to be 
treated with a 1-D model when the layer thickness is 
sufficiently thin. 

[4] The amplitude scintillation index, S4, is defined as 
the normalized root-mean square (RMS) deviation of 
irradiance, /: 

si = {{i2)-{if) tii Ii) 

Here the angle brackets {...) formally denote an 
ensemble average but in practice indicate spatial or 
temporal averages. The S4 index used as the sole measure 
of scintillation does not parameterize phase fluctuation 
effects or provide detailed characterization of fade depth 
or duration. Also, once S4 reaches the neighborhood of 
unity (focusing or saturation regime), scintillation 
characteristics may vary even as S4 remains relatively 
constant. Nevertheless, S4 remains a worthwhile means 
of characterizing scintillation due to several factors. 
Large, long-term archives of S4 measurements exist and 
morphological studies use these archives to characterize 
the natural scintillation environment [cf. Aarons, 1993]. 
Current scintillation detection systems are based largely 
on S4 measurements [Groves et al, 1997; Thomas et al, 
2001]. Additionally, scintillation at L band (1-2 GHz) or 
higher frequencies often does not approach saturation 
except in limited circumstances. Lastly, empirical 
relationships between S4 and properties like signal fade 
statistics [e.g., Fremouw et al., 1980; Yeh and Liu, 1982] 
allow historical or climatological 5*4 values to be used in 
system design. 

[5] As noted above, criteria for determining the reso- 
lution required to perform numerical phase screen com- 
putations are available. For the application at hand, the 
existing resolution criteria have some shortcomings, 

however. Firstly, the criteria do not directly consider 
the computation of a statistical index such as S4 but 
rather the field at the plane of observation. Secondly, 
some of the criteria, particularly those related to the inner 
scale of the spectral density function (SDF) of phase 
fluctuations at the screen [Buckley, 1975; Knepp, 1983], 
are unduly conservative. One does not expect the pres- 
ence or absence of very small amounts of fluctuation 
power above a typical, proposed inner scale's spatial 
frequency, where the true fluctuation power may also fall 
below the sensor's noise floor, to have a significant 
impact on scintillation. Additionally, criteria based on 
the RMS phase of the screen [Buckley, 1975] become ill- 
defined for a power law phase SDF with a poorly known 
outer scale, one which is often masked in detrending and 
other measurement-related phenomena. Low-frequency 
fluctuations dominate the RMS screen phase yet do not 
contribute much to amplitude scintillation [e.g., Forte 
and Radicella, 2002]. Other established criteria for phase 
screen application will be discussed throughout the 
analysis as appropriate. 

2. Discrete Phase Screen Model and 
"Pinhole" Subsampling 

[e] The basic scheme for the present analysis is to 
consider what happens to S4 as more and more samples 
are removed from a discrete 1-D phase screen. Concep- 
tually, it is simpler to first investigate removing samples 
from the discrete sum while permitting spatial-frequency 
aliasing. We call this technique "pinhole subsampling" 
because the effect is similar to placing a screen with 
pinholes at regular intervals over the original phase 
screen. When one goes from a continuous integration 
to a discrete summation (i.e., a continuous Fourier 
transform to a discrete Fourier transform for the propa- 
gation computation) one tacitly assumes a similar dis- 
crete model, albeit one where the samples are initially 
very closely spaced. More realistically, sparse sensor 
data will have antialias filtering applied; therefore, we 
will subsequently examine the behavior of subsampling 
without aliasing. 

[7] For reference, the complex amplitude of a wave at 
a distance z from a 1-D continuous phase screen with a 
normally incident plane wave above it is 

00 

{A(x,z) =—   /   dx'Ao(x;)exp 
?F  J 

(x-x7) 
ra- 

4 

where rF = yXz is the Fresnel radius and A)(x) is the 
complex amplitude of the wave immediately below 
the phase screen. Figure 1 illustrates the geometry for the 
1-D screen. We have ignored a phase factor of 6th, where 
k = 2-nfk, and a constant phase factor. Note that AQ(X) = 
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Phase Screen 

(Incoming Wave) 

|C*_.Ö) 

Observation Plane 

L 

T 

geometry. The wave propagating from an individual 
element of the 1-D screen is [cf. Toraldo di Francia, 

z = o     1958, pp. 355-356]: 

Observation Point 

Figure  1.   One-dimensional phase  screen  scattering 
geometry showing angle x« and length s„. 

exp[j(j)(x)], where <\>(x) is the phase of the wave front 
across the screen, and e-!u* time dependence is implied. 
The irradiance is I(x, z) = \A\2 = AA* (where the asterisk 
denotes complex conjugation). 

[8] Our starting point will be to compute the S4 for a 
high-resolution discrete phase screen, of sample spacing 
A, whose irradiance pattern closely matches that of the 
equivalent continuous screen of equation (2). In the 
discrete case, we have phase samples, «j>„, at x„ = «A, 
with one restriction being that phase must change by less 
than TV over each interval [Knepp, 1983]. Samples of the 
wave front immediately below the screen become 
exp(KJ>n). Then we subsample by a factor a, choosing 
the first of every a samples according to the pinhole 
subsampling technique described above. This process 
yields a new screen whose effective sample spacing is 
crA. For the subsampled phase screen we compute the 
irradiance pattern at the observation plane and the 
resulting S4, termed S4a. We compare S4a to the original 
screen's S4 (i.e., S4\) by examining their ratio as a 
function of cr, forming plots that we shall call "subsam- 
pling curves." Note that even though S4a/S4l will be seen 
to remain relatively constant over a wide range of a, the 
irradiance pattern from the subsampled screen begins to 
deviate from that of the original screen even for small 
CT> 1. 

[9] Although the discrete phase screen expressions, 
when appropriately simplified, are similar to the contin- 
uous case, we will present more detail than usual to 
emphasize the discrete nature of the calculations and 
because the 1-D Huygens-Fresnel formulas are not often 
used. Using a Huygens-Fresnel approach, we let each 
sample of the wave front below the screen re-radiate a 
cylindrical wave, as appropriate to the 1-D screen 

V»(x,z) (3) 

^2 • Here sn = Jz2 + (x — xn)
A is the distance from the point 

(xn, 0) at the screen to the observation point (x, z) and cos 
Xn = zlsn (see Figure 1). The parenthetical terms in (3) 
are the obliquity factor that may be derived from 
Kirchhoff's scalar wave theory [e.g., Born and Wolf, 
1980]. 

[10] The total wave field at an observation point 
becomes the sum of the individual wave field contribu- 
tions, Vn: 

A(x,z) 
eft/4 A 

2V\ £< #. e"3" 
l+z/s„).        (4) 

Now, we construct the following quantity based on (4) to 
represent the subsampled wave field: 

Aa(x,z) 
^"(qA) 

2\/X 
£«**■ 

„iksu 

;(1 + z/s(an)). 

(5) 

The subsampled irradiance is I„(x, z) = W\2 = ACTA* and 
the normalized RMS deviation of Ia gives the subsampled 
amplitude scintillation index, S4a. Except for/], which is 
essentially / as used previously, the /„ have no simple 
physical meaning; however, the Ia can be visualized 
readily in terms of the pinhole subsampling process. 
Manipulation of equation (5) provides the basis to 
evaluate the S4 from a subsampled screen in an efficient 
manner as will be seen in the next section. Note again that 
the phase samples are not band-limited to the new spatial 
Nyquist frequency when sampled at the lower rate. The 
extension to the band-limited case will be discussed later. 

3. Properties of the Pinhole Subsampled 
Screen 

[11] As outlined above, the basic quantity to investi- 
gate is Äjo/Äu as a function of sample spacing. We plot 
these quantities against each other and examine patterns 
in the resulting subsampling curves for various realiza- 
tions of a 1-D phase screen. Numerical experiments 
show that the average shape of the curve is a function 
of scintillation strength and the SDF of phase variations 
at the screen. Analytic studies confirm the dependence 
on the form of the SDF in the case of weak scatter and 
provide a quantitative basis for generalizing the results of 
the numerical experiments. Note that in the following 
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A, B, c, \ \ % \, BN °N 

¥ 
A. ^ *N 

B, BN °, CN 

Figure 2. Schematic of re-packing a finite-width (but 
large) phase screen to perform the subsampled screen 
calculation. Example shown is for subsampling by a 
factor of 3 (i.e., a = 3). Each set {Ah Bb etc.) is termed a 
"subscreen" in the text. 

discussion we treat the case of a phase screen with a 
uniform &, across many Fresnel radii so that: (1) the 
screen is sufficiently wide for accurate computation 
[Knepp, 1983; Coles et al, 1995], and (2) one can 
achieve a reasonably accurate estimate of S4 by averag- 
ing the variance of irradiance across the entire screen. 
With sparse data from real measurements maintaining a 
uniform S4 across many Fresnel radii is not always easy, 
as will be illustrated later. 

3.1.   Numerical Exploration 

[12] Recalling that JC^,,) = onä and performing some 
algebra, we observe that equation (5) can be rewritten as 
follows: 

J*l*\ exp 
A/<J 

1 
z/a 

\/sn(x/o,z/o) 

s„(x/a,z/a)y 

efficient than direct computation from (6), though one 
must be vigilant for effects due to windowing, implicit 
periodic continuation, etc. This numerical technique can 
be further improved if we recognize that there are 
essentially a realizations of the subsampled screen pres- 
ent in any given realization of the original screen. We 
should be able to "re-pack" the original screen, if it is 
finite but wide, in the manner illustrated in Figure 2 
to produce a new screen consisting of a subscreens. 
Assuming minimal influence between adjacent sub- 
screens, we can then calculate the irradiance in the scaled 
coordinate system and automatically average the statis- 
tics for all 0 realizations at once by taking moments 
across the entire screen. This technique has the advan- 
tages of maintaining a constant FFTsize (e.g., a power of 
2) and providing improved statistical estimates ofS4a for 
large a. Appendix A investigates the effects of adjacent 
subscreens and other considerations and finds that the 
assumption made above is empirically justifiable. 

[14] The phase screens that we use in the numerical 
experiments are of two basic types: white noise and 
power law screens. The white noise screen realizations 
consist of uncorrelated samples with Gaussian statistics. 
Although white noise phase screens are physically un- 
realistic they provide a useful analytical test. The power 
law screen realizations start with a white noise screen 
and modify its SDF to yield a power law form. To avoid 
low-frequency divergence problems, the power law SDF 
that we actually implement is constant below a cutoff 
spatial frequency, q0, and proportional to the "pure" 
power Law \q\~p at higher spatial frequencies, q. Here_p is 
the "spectral index" of the power law. Generally, we 
choose q0 conservatively for the power law screens so 
that it covers at most the two lowest frequency bins 
(including the zero-frequency bin) and so that 2ir/^0 > 
rF. For each realization, regardless of the screen type, we 
scale the fluctuations in the phase screen values to yield 
the desired starting 54 for the run. 

[15] Figure 3 shows subsampling curves for numerical 
experiments using different 1-D phase screen realizations 
and various starting S4 levels. Note that the horizontal 
axis is the sample spacing, 0A, normalized to the Fresnel 
radius, rF. For reference, the formula for S4tJ is 

where s„(x/a, z/a) = y(z/a)2+(x/a—xn)
2. The 

significance of representation (6) is that it is exactly in 
the form of the wave field from a phase screen that uses 
one sample out of every 0 samples of the original phase 
screen but in a new, scaled coordinate system where x —* 
xla, z —► z/a and X —» X/CT. This transformation is useful 
in efficiently calculating S4a. 

[13] The prescription for numerical calculation of Ia is 
to subsample the screen, scale the coordinate system 
appropriately and compute the field by the fast Fourier 
transform (FFT) technique. Using the FFT is far more 

r.2 
ü4a (II) - 1 (7) 

when the average irradiance of the wave has been 
normalized to unity, as in the present case. The results 
presented employ the phase screen "re-packing" tech- 
nique outlined above. Not shown are investigations of 
the Knepp [1983] criterion based on the phase change 
from one sample to the next. In only one case, p = 4 and 
S41 = 0.9, did the RMS phase difference between 
subsampled points (A^s) exceed -n before reaching 
crA = rF. In all cases, this sampling criterion was satisfied 
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Figure 3. Results of numerical experiments for pinhole subsampling of random phase screens 
with various SDFs: (a) "white noise" (i.e., delta function ACF); (b) power law with spectral index, 
p, of 2; (c) power law, p = 3; (d) power law, p = 4. These "subsampling curves" illustrate the 
variation of the ratio of X^ to 541, where a is the subsampling factor. The cases are selected to have 
541 values as indicated of 0.3, 0.6, and 0.9. Computation uses the phase screen "re-packing" 
technique described in the text. The grid spacing of the original screen is A; rF is the Fresnel radius. 
In these cases, p = />/A = 362 and the width of the original screen is 181rF. 

for the initial phase screen (very strongly so in the power 
law cases) and we found no features in the curves of 
RMS phase difference versus CTA that appear to indicate 
the structure of the Figure 3 subsampling curves. 

[i6] The cases in Figure 3 illustrate that a few samples 
per Fresnel radius are usually sufficient to compute S4 
under the pinhole subsampling technique to within a few 
percent accuracy. More precisely, S4JS41 remains rela- 
tively constant for the power law phase screen realiza- 
tions until reaching a "knee" at a spacing between 
samples of about 0.3-0.5rjr. Similar behavior also occurs 
for the white noise phase screen results, although the 
decrease is more pronounced prior to reaching the knee 
and significant "ringing" is visible to the left of the knee. 
In all cases shown, the behavior remains qualitatively 
similar over the range of starting S4 values presented and 
the positions of the knees move from larger to smaller 
spacing values with increasing scintillation strength. 
Figure 4 shows examples of the effects of entering the 
focusing and saturation regimes on subsampling curves. 

Even in these strong scattering cases the subsampling 
curves retain forms similar to the previous ones. 

3.2.   Quantitative Analysis: Weak Scatter 

[17] The general behavior of &tCT/S4i with CT, as illus- 
trated in these numerical experiments, is not wholly 
unexpected. One reasonably anticipates that the irradi- 
ance pattern of a sampled version of a continuous screen 
can be reproduced at a fine enough grid spacing. 
Although the accuracy of the reproduction will suffer 
at larger and larger grid spacings, most of the fluctuation 
power lies in the longer wavelength scales. Nevertheless, 
it is desirable to have a quantitative theory that explains 
the features of the subsampling curves. In this section we 
develop a theory of subsampling curves for weak scatter 
by considering the effects of aliasing in a continuous 
phase screen model. 

[is] The SDF of phase is the Fourier transform of the 
autocorrelation function (ACF), <£>0(q) = F{{(}>(£,)cK£, + 
x))}. For weak scatter, a well-known result is that the 
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Figure 4. Effects of saturation and focusing conditions on pinhole subsampling results. The left- 
hand plot shows 1S41 as a function of SDF scaling factor C, normalized to C0.i, the scaling required 
to yield S41 = 0.1. The phase screen has a. p = 3 power law, scaled from a new realization but 
otherwise having the same length and outer scale as Figure 3, Before subsampling, screens at all 
scattering strengths computed satisfy the Knepp [1983] Nyquist criterion (see text). The right-hand 
plot shows subsampling curves at the lettered points identified in the left-hand plot. For example, 
point "c" is the focusing peak. 

SDF of irradiance variations at the observation plane is 
given by: 

®M(q) = 4$e(q)sm2 

4-rc 

The subscript notation, A/, emphasizes that (8) repre- 
sents the Fourier transform of (/(£,)/(£. + x)) — 1 
[Salpeter, 1967], rather than the transform of the 
irradiance ACF itself. The S4 value that is calculated 
from weak-scatter theory is then S4 = U, where 

/ 
U2 = 4        dq%(q) sin2 f4 

4TT 

[19] To model the effects of subsampling we treat the 
discrete phase screen of equation (6) as if it adequately 
represents a continuous phase screen whose properties 
are related to the original screen. Thus for the weak- 
scatter case we examine what happens to equation (9) as 
the screen is transformed and make quantitative compar- 
isons to the numerical results. The effects we consider in 
the calculation of U are: (1) subsampling and (2) coordi- 
nate scaling. Uniformly subsampling the phase (x„ —> 
ax„) makes §>ö(q) —» a~ 1^0(q/a) by the scaling theorem 
for Fourier transforms. Similarly, the coordinate trans- 
formation (x —► xla, etc.) makes $4/(9) —» a<&bi(pq). 
Note that q2rF —»■ (oq)2(rFfu)2 = q2^; i.e., the transfor- 
mation due to coordinate scaling leaves the argument of 
the sin2 term unchanged. The net effects of these two 
transformations appear to cancel until aliasing of the 
SDF is considered. 

[20] To account for aliasing of the SDF we adopt 
the following prescription. First, we limit the range 
of integration in (9) to the Nyquist frequency limits, 
±IT/(CTA), Then the spectral density that originally cov- 
ered the frequency range ±TT/A, the initial Nyquist limits, 
is "folded" and summed according to the aliasing 
process (Figure 5) to produce a new phase spectrum, 
Aofc^t?)}, where the notation indicates an "aliasing 
functional" (the convolution of the original SDF with a 
periodic train of delta functions of spacing 2H/(CT A)). If 
we denote as Ua the estimate of U produced by sub- 
sampling the screen, 

%/aä 

U2=4    I    dqK{%{q)}sm2(^ 
—it/wA 

(10) 

For a screen with a delta function ACF we can readily 
evaluate (10) and compare the theoretical results to the 
numerical results. 

[21] For a discrete realization of delta function corre- 
lated screen, the starting SDF is ^^(q) = k' (i.e., "white 
noise"), up to the initial Nyquist frequency, q = n/A. In 
this case, A^c&^g)} = ok'. Substituting into (10) we 
evaluate and obtain 

U2 = &f 

15/0A 

'°f* q sm 
4ir 

E-   = 4njf 
Tp     \<jA/ 

:in 
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A2{*+(?)} 

*/A Jt/(2A) 

W«)} 

(C) 

A4{<y<?)} 

JI/(3A) 

(d) 

7t/(44) 

Figure 5. Graphs illustrating the aliasing of the SDF at different sample spacings. (a) Original 
SDF (schematic example, one-sided). Note that power beyond q = IT/A is assumed to be negligible, 
(b-d) Aliased SDF used in integral (10) for cr = 2, 3, 4. The range of q values is restricted to the 
one-sided limits of integration (i.e., 0 to ir/(aA)). The distinct shaded regions represent different 
portions of the original SDF that are "wrapped around" and summed to yield the overall aliased 
SDF, Aa{^(q)}. 

where C(x) = J^dt cos(i;/2/2) is the Fresnel cosine 
integral (in the form of Abramowitz and Stegun [1972, 
7.3.1, p. 300]). For comparison with the subsampling 
curves in the weak-scattering case, we examine the 
behavior of the following expression: 

[22] Now we rum to a power law phase screen model 
[Rino, 1979 and references therein; Yakushkin, 1996, and 
references therein]. For the analytic approximation we 
take the 1-D SDF of the screen phase to be a pure (i.e., 
"scale-free") power law 

%(q) = C\q\-p. (13) 

(12) 

where p = rF/A, the Fresnel radius normalized to the 
original sample spacing. Figure 6a compares the 
equation (12) results with the pinhole subsampling 
numerical results for a white noise screen with S4 = 
0.1. Note the excellent agreement between the two 
curves. 

The parameters C (a normalization factor related to 
fluctuation strength) and p (the "spectral index") fully 
characterize the phase SDF. An outer scale wave 
number, q0, can also be introduced but it is ill-defined 
in observational F region data [Rino and Liu, 1982]. 
Using a scale-free power law approximation will not 
significantly change computed S4 if £0 = 2TT/^0 is 
sufficiently large compared to rF [Rumsey, 1975]. 
Establishing  an outer scale is  also not required to 
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Figure 6,   Numerical experiments in the same format as Figure 3 with overlaid analytic results 
from equation (12) or (15), as appropriate. Numeric subsampling results are for cases with S4i = 
0.1. All computations have p = rp/A = 362. Numerical experiments have original screen width of 
lSlrF, as before. 

insure convergence in weak-scatter S4 calculations; for 
the SDF specified by (13), the integral (9) can be 
evaluated if 1 < p < 5. We shall also assume that the 
spectral density is negligible beyond q = ±it/d, i.e., for 
small-scale sizes, so that the initial SDF can be 
effectively truncated to these limits without introducing 
significant error. 

[23] To evaluate A^fcE^g)} in the power law case we 
"fold" the spectrum and evaluate the results numerically. 
First, we simplify equation (10) with an elementary 
change of variables: 

U2 = %C 
\-P sßpßv 

dqk0{\q\-?}€m2{q% (14) 

where p = rpiL as before. Qualitatively speaking, the 
potential for a knee to develop is clear from (14). Once 
the range of integration falls far enough inside the first 
maximum of sin2(f2) at oA/rF = s/212 = 0.7 the value of 
Ul drops off with increasing CT, if the decrease as q4 

dominates the buildup of the aliased SDF. Quantitatively, 
forming the ratio (12) yields 

Po = 

x/iß/lo 

J   dqka{\q\~p}^2{i) 

Vip/2 

dq A.^plsin2^2) 
L    0 

-2<5 -P)ß 

r(V) cosj V -P)A 

s/%p/2o 

dq MM"'} sin2 (?2 

(15) 

where T(...) is the gamma function. The approximation 
assumes p is sufficiently large so that the upper limit of 
the integral in the denominator can be extended to +00. 
In that case, the integral in the denominator may be 
evaluated for 1 <p < 5 [Gradshteyn and Ryzhik, 1994, 
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3.823, p. 484]. Note that the transformation from (10) to 
(14) alters the wave number range so that the SDF 
initially covers from 0 to i/ivp/2 on the positive wave 
number side. Then aliasing as a function of a "folds" the 
SDF in half, thirds, etc. from there and sums the various 
pieces (details in Appendix B). 

[24] Figures 6b-6d compare the theoretical calcula- 
tions based on the SDF with numerical experiments for 
weak scattering (S4 = 0.1). The agreement at low a 
values is good and the features of the subsampling curves 
line up. The discrepancies between the theoretical cal- 
culations and numerical experiments at larger values of a 
may represent a breakdown of the weak-scatter approx- 
imation as the SDF becomes distorted by aliasing, 
although the difference in SDF form between the 
numerical experiments and the analytic expression prob- 
ably contributes. Effects like spectral leakage may also 
come into play. Nevertheless, the theory accounts for 
most features of the numerical experiments in the case of 
weak scattering. 

3.3.   Strong Scattering Considerations 

[25] As the left-hand plot of Figure 4 suggests, and 
Jokipii [1970] proves, the weak-scattering approximation 
continues up to a larger S4 than perhaps is commonly 
appreciated if the phase SDF falls off sufficiently rapidly. 
Approximate strong-scattering relationships between U 
and S4 for power law phase screens exist throughout 
the literature, either in the asymptotic case [Rumsey, 
1975; Dashen and Wang, 1993] or for strong focusing 
[Yakushkin, 1996]. With increasing U, S4 does not 
increase without bound but eventually saturates at unity, 
possibly passing through a maximum value greater than 
1 (i.e., focusing) on its way to saturation (cf. Figure 4). 
Rino [1979] outlines the overall behavior in more detail, 
although his U is defined slightly differently than here. If 
the power law SDF remains relatively undistorted by 
aliasing, as it does at low a, then the relationship of S4a 

to Üa may approximate the relationship of S4 to U for the 
given power law. Once the form of the spectrum changes 
significantly as the range of integration becomes small 
it is not clear what the relationship might become, 
however. Even going from an S4 of 0.1 to an S4 of 0.3 
alters the subsampling curve; that is, if Figure 6 and 
Figure 3 (S4 = 0.3) numerical experiment results are 
overlaid they diverge at larger values of a. 

[26] In the absence of a more refined theoretical 
approach, we conclude that it is best to rely on the 
results of numerical experiments for guidance in cases of 
stronger scattering since they are relatively simple to 
calculate. Clearly the results of subsampling are univer- 
sal for the weak-scattering theory in the sense that the 
form of the subsampling curve (15) depends only on the 
power law exponent, p, not on the specific realization of 
the phase screen for a given p. It is likely that this form of 

universality extends to cases with larger values of S4 as 
well. 

4.  Incorporating Antialias Filtering 

[27] Using the definitions and analysis from the 
pinhole subsampling technique, we can readily extend 
consideration to cases where antialias filtering is 
applied between steps. Prior to selecting one sample 
out of every a from the original screen, we now apply 
low-pass filtering to the phase samples, 4>„, to limit 
their fluctuation power to the new Nyquist spatial 
frequency, it/(crA). Denoting these band-limited samples 
as "$(0«), we use them in place of 4>(<J„) in formulation (6) 
and subsequent analysis. Practically speaking, we 
estimate ^>(tJ„) by averaging over the a samples from 
4>(CT„) to <j>(CT„+<j-i). Figure 7 shows the numerical 
results of subsampling with antialias filtering for 
weak (S4 = 0.1) and strong (S4 = 0.9) scattering 
cases. These plots illustrate a degraded ability to 
estimate S4 accurately from a subsampled screen, 
particularly for less steep phase SDFs, as is to be 
expected. Nevertheless, for reasonable ionospheric 
power spectra (p > 2.4 or so), it appears that 
a sample spacing of about 0.2rF is sufficient to compute 
S4 to within 90% accuracy when antialias filtering is 
applied. 

[28] To obtain analytic antialiasing estimates we 
remove the aliasing functional from equation (10) and 
carry the substitution through to equations (11) and (14). 
Figure 7 presents analytic estimates so derived for direct 
comparison with the numerical experiment results (weak 
scatter, thick plot line). As before, note the excellent 
agreement in the white noise case and very good agree- 
ment in the power law cases, provided an outer scale is 
now introduced into the phase SDF to better match the 
SDF as actually generated. The SDF form in place of 
expression (13) now becomes &<p(q) = C(q4 + qt)~p/4, 
where £0 = 2-x/q0 is the outer scale, to approximate the 
SDF used in the numerical generation of the phase 
screen. 

[29] There are subtle aspects hidden in the application 
of sampling theory to phase screens, however. For 
either type of data-based phase screen model discussed 
in the Introduction, the quantity sampled relates directly 
to the phase of the screen, <J)(JC), and not to the field, 
Ao(x) = exp[j'<t>(x)], immediately below the screen. On 
the other hand, sampling of A), not cj), is what is 
considered in the Knepp [1983] sampling-based reso- 
lution criterion and the Costa and Basu [2002] inter- 
polation method. A fundamental difficulty is the 
modulo-2ir equivalence of phase that can complicate 
seemingly routine analysis [e.g., Freund and Kessler, 
1996]. Consider the following thought experiment. 
Take a continuous, 1-D phase screen and add 2mt to 
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Figure 7. Subsampling with antialias filtering applied. Numeric ("Num.") subsampling results 
are for cases with S41 =0.1 (weak scatter) and S4j = 0.9 (strong scatter). Analytic estimates derive 
from equation (12) or (15), as appropriate, with aliasing functional removed. To obtain agreement 
in the power law eases, it was necessary to introduce an outer scale (£0% as is actually used in the 
phase screen generation, through a modification to SDF (13) that is discussed in the text. "Analytic 
(Z0)" indicates the modified SDF results (i0 = \ArF in this case only), whereas "Analytic (00)" 
denotes the expression (13) results (i.e., £0 —* 00). All computations have p = rp/A = 362 and 
numerical experiments have original screen width of lBlrF, 

any number of arbitrary segments. Although there are 
technically a large number of discontinuities in the new 
<j>, AQ remains identical to its previous form and the 
results of propagation formula (2), and its discrete 
equivalent, are unchanged. If, however, one applies 
low-pass filtering to band limit the new §(x) the 
resulting Ag will change (not as any straightforward 
filtering operation on the field itself) and the previously 
invisible phase "discontinuities" now become manifest. 
If 2«ir is large one can produce a tremendous amount 
of refractive scintillation and tailor the pattern almost 
at will by varying n from segment to segment and 
adjusting the segment widths and spacing. Similar 
issues arise with respect to an isolated arbitrary step 
in phase (not treated here). 

[30] Clearly, these thought experiments possess a 
certain artificial character, although they bear relation 
to observations of dislocations in ultrasonic wave 
fields  [Nye and Berry,  1974]. They are also inter- 

twined with restrictions about permissible scale sizes 
of variation relative to the wavelength scale in the 
Huygens-Fresnel-Kirchhoff theory. At the least, these 
considerations indicate that some caution is warranted 
in the treatment of phase sampling issues. Practically 
speaking, such "topological" effects probably do not 
routinely cause serious problems under conditions 
where the RMS phase difference between samples is 
small. For example, we have found that the Costa and 
Basu [2002] technique of interpolating AQ, rather than 
cf>, can reproduce amplitude scintillation patterns well, 
despite its having problems with energy loss (interpo- 
lating the field across chords on the unit circle rather 
than along arcs reduces the average field amplitude). 
Nevertheless, we shall adopt a conservative approach 
pending further resolution of sampling issues. While 
band-limiting is unavoidable in actual data samples, 
we shall apply only pinhole subsampling in case 
studies after determining that the data lies sufficiently 
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Figure 8.   ROCSAT  1 plasma density data for 21  March 2001  (UT) with insets showing 
enlargements of regions under study. Magnetic local time ranges from 2210 to 2320. 

far to the left on the subsampling curves, A < 0.2rF, 
that truncation of the SDF should have minimal effect. 

5. Example Data Applications 
[31] Now we study data-based screens to illustrate 

some practical subsampling issues. First, we examine 
high-resolution in situ plasma density data from the 
ROCSAT 1 satellite taken during equatorial spread F 
conditions in March 2001 near Ascension Island (7°56'S, 
14°22'W geographic). ROCSAT 1 flies in a 35° inclina- 
tion orbit near 600-km altitude and collects in situ data 
on ion density and drifts at a maximum rate of 1024 sam- 
ples/s [Yeh et al, 1999; Su et al, 2001]. The effective 
Nyquist frequency limit depends on the local magnetic 
declination. For a descending pass near Ascension 
Island, where magnetic north lies 17°W of true north, 
the minimum observed scale size perpendicular to the 
field is approximately 9 m (4.5-m sampling). We should 
note for this case, and the subsequent GPS example, that 
the observations presented represent some of the highest 
resolutions available. Much of the available historical 
data, like the vast total electron content (TEC) data set 
from the International GPS Service for Geodynamics 
(IGS) receivers, are of significantly lower resolution 
[e.g., Pi et al, 1997]. 

[32] Using the ROCSAT data-based model we mainly 
study the impact of "coherent" phase screen structure 
on the estimates of 54 obtained through subsampling. 
Intermittent sharp gradients in electron density tend to 
produce "bursty" amplitude scintillation for radio 
waves of a high enough frequency (e.g., GHz range) 
with a different distribution of amplitude fluctuations 
than would be found for a random screen [Wernik et 
al, 1980; Costa and Basu, 2002]. At these higher 
frequencies, the Fresnel radius is less than the typical 
distance between sharp-gradient regions that produce 
most of the fluctuations in amplitude. The data-based 
model adopted is similar to the first model considered 
by Costa and Basu [2002]. This model, where the in 
situ data modulates the entire vertical profile, repre- 
sents a worst-case scenario for the influence of coher- 
ent structures on scintillation. The model's effect 
should be similar to the enhancement of scintillation 
observed when viewing along the magnetic field lines 
[e.g., Sinno and Minakoshi, 1983]. 

[33] Figure 8 shows ROCSAT 1 density data col- 
lected near Ascension Island on 21 March 2001. We 
have manually selected data regions to use in the 
subsampling investigation (inset enlargements). These 
represent data with sharp gradients (Figure 8a) and 
more "turbulence-like" data (Figure 8b). Even during 
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Figure 9. Pinhole subsampling curves for phase screens based on ROCS AT 1 data from 21 March 
2001 (solid lines). The time indicated on each subplot is the start of the 2048-point (2 s) segment of 
plasma density data used and/is the radio frequency used, (a) and (b) Subplots from a data 
segment in Figure 8a. (c) and (d) Subplots from a data segment in Figure 8b. The dashed lines 
represent the subsampling curves for the equivalent "noncoherent" screens (see text) and have 
been normalized to the 541 values of the solid curves, not their own 54] values. Note that part of the 
dashed curve is off the scale in Figure 9b; its initial S4 value is about 1.5 times that of the solid 
curve. 

the short data segments shown the fluctuations are 
clearly not statistically stationary, which is not unex- 
pected since the satellite travels about 90 km along its 
track during the 12-s time periods of the enlargements. 
While the field at the observation plane can be 
computed for nonstationary fluctuations, simply using 
one S4 value to characterize scintillation has question- 
able utility in this case. Consequently, we restrict the 
initial phase screens prior to subsampling to have 2 s 
worth, or 2048 samples, of data. Since the phase screens 
are relatively short we must investigate screen-width 
concerns [Knepp, 1983; Coles et ah, 1995]. Also, the 
scatter in the 5^ estimates will increase if fewer samples 
are included in the average. The data selected for the 
initial screens are: (1) a 2-s segment centered on the 
sharp edge in the Figure 8a data, and (2) a 2-s segment 
in the bottom of the shallow density reduction highlighted 
in Figure 8b. 

[34] We adopt the following parameters for the satel- 
lite-derived phase screen: z = 308 km with a vertical TEC 

of 3.3 1Ö17 m~2. These parameters are based on an iono- 
spheric slab thickness of 100 km and digisonde measure- 
ments at Ascension Island for 2355 UT on 21 March 2001: 
hmF2 = 308 km, NmF2 = 3.3-10l2m"3. We take the initial 
spacing between sample points to be 4.5 m. Since the 
ROCSAT 1 data have been subjected to antialias filtering 
in the measurement process, spectral information perpen- 
dicular to the magnetic field at scale lengths smaller than 
9 m has been lost. A 4.5-m sample spacing with the phase 
screen parameters above gives p = r^ä = 107 at a radio 
frequency of 400 MHz and p = 55 at 1.5 GHz. Sample 
spacing is thus of the order of 0.0lrF in both cases and our 
criterion for initially being on the left-hand side of the 
subsampling curves is met by an order of magnitude. The 
required minimum number of points, JV, for adequate 
phase screen width is ~A<j>n.nsp

2/(2iT) [cf. Knepp, 1983; 
Coles et ah, 1995]. In the 400-MHz cases, Aejw ~ 1 
giving N~ 1800 points and indicating that a 2048-point 
simulation is adequate. The screen width criterion is far 
more strongly satisfied in the 1.5-GHz cases. Again, the 
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Figure 10. Pinhole subsampling curves for the GPS LI frequency (1.57542 GHz) computed from 
GPS TEC data for satellite PRN 24 during the interval 0000-0100 UT on 8 March 2002. The 
computations employ 2048-point segments of 20-Hz GPS TEC data, starting at the times indicated 
on each subplot. We list the measured amplitude scintillation index, 54(meas), from the GPS receiver 
for comparison. Computations are for an assumed initial sample spacing of 5 m (see text). 

tradeoff in screen width for sparsely sampled real data is 
between stationary statistics and implicit periodic contin- 
uation effects. 

[35] The solid lines of Figure 9 show pinhole sub- 
sampling curves for phase screens based on the 
ROCSAT 1 density data. As before, the curves show 
a relatively constant S4 up until a "knee" is reached as 
the sample spacing becomes larger. To study the 
effects of coherent structures we adapt a technique of 
Costa and Kelley [1978], attributed to a suggestion by 
D.T. Farley. In essence, we take the original phase 
values in our phase screen model, Fourier transform 
the data set, multiply each complex value by a random 
phase factor (uniformly distributed from 0 to 2ir) and 
then transform back. The resulting phase screen should 
essentially have the same SDF as the original screen 
but with coherent structures eliminated. We repeat each 
of the subsampling computations shown in Figure 9 
for the "noncoherent" screens generated by the above 
procedure and have overlaid the results with dashed 
lines. In three of the four cases the results are not 

greatly different from those obtained from the ROCSAT 
1 data directly. The exception, Figure 9b, is the case 
where the radio frequency is high and a particularly 
notable sharp gradient appears in the phase screen. A 
jump in phase produces a type of edge diffraction 
pattern and at higher frequencies the resulting irradiance 
fluctuations become localized below the jump, and at 
the ends of the screen, due to periodic continuation, 
unless the phases at the endpoints happen to match well 
(i.e., difference, modulo 2-rc, close to zero). Still, in the 
other cases, even at a lower frequency for the same 
sharp gradient, the subsampling technique performs 
well. 

[36] A different comparison may be made using GPS 
data, between 54 as computed from TEC fluctuations 
and measured S4. We examine 20-Hz TEC and ampli- 
tude data from 8 March 2002 that were collected 
during an Air Force Research Laboratory (AFRL) 
experiment at Ascension Island with an Ashtech 
Z-12 receiver. The data we examine are for satellite 
PRN 24, which moved from north to south at an 
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elevation of 55-75° and was the closest GPS satellite to 
zenith during the period 0000-0100 UT under consid- 
eration. Since the satellite's line of sight moved roughly 
along the magnetic field and the irregularities are field 
aligned, as a first approximation the eastward motion of 
the ionosphere is the only significant contribution to 
changes in TEC over the short (2048-point or 102-s) 
intervals under study. Assuming an eastward ionospheric 
drift of 100 m/s yields a 5-m initial spacing between 
samples in the phase screen model, almost the same data 
spacing as for ROCSAT above. We take the phase screen 
distance to be 300 km. 

[37] Figure 10 shows the pinhole subsampling curves 
and the comparison of phase screen derived S4 to 
measured S4 for four segments during 0012-0036 UT, 
the interval when moderate amplitude scintillation on 
PRN 24's signal occurred. Interestingly, for the cases 
where S4i is close to S4imeas) (i.e., Figures 10a and 
10b) the subsampling curves appear more "typical" 
than in the remaining cases. Also, if we make the 
initial sample spacing smaller in the cases of 
Figures 10c and lOd, the computed S4i approaches 
the measured S4 and the curves become more "typical." 
It is possible to find values of A, e.g., near 3 m, where 
all four curves become "typical" and the computed S41 
is nearly the measured S4 in all cases. Thus the 
subsampling model appears to be capable of some 
success in the conversion of GPS TEC values to S4 

(at the GPS LI frequency) and might be able to yield 
information such as drift speed (based on sample 
spacing) with further refinement. We should note that 
we have assumed that the TEC values represent the 
phase of the screen directly whereas in reality the 
measured "TEC" consists of the true TEC value plus 
contributions from phase scintillation [Bhattacharyya et 
al, 2000]. 

6.  Conclusions and Recommendations 
[3s] We have investigated the computation of the 

amplitude scintillation index, S4, in 1-D phase screens 
where the sampling is sparse. Whether or not antialias 
filtering has been applied to the phase samples, only a 
few (~5) evenly spaced samples per Fresnel radius are 
usually necessary to compute S4 with an error of 
~10%. We have illustrated the application of the 
subsampling approach to in situ electron density data 
and to ground-based TEC data and conclude that the 
basic subsampling principles still work, although care is 
required for successful use. Furthermore, the novel 
numerical and analytical techniques that we apply to 
the problem show promise to address other phase 
screen questions. 

[39] Firstly, although beyond the scope of the pres- 
ent work, the 2-D phase screen sampling problem 
needs to be addressed. Clearly, the basic framework 
of subsampling and aliasing considerations extends to 
2-D screens quite readily. Still, the relationships 
among available 1-D phase data cuts [e.g., Lovelace 
et al, 1970], receiver time series data [e.g., Yeh and 
Liu, 1982] and an underlying subsampled 2-D phase 
screen model all need to be explored, potentially 
within the context of a complicated polar cap flow 
pattern. Secondly, the techniques have some applica- 
bility to other phase screen resolution issues, for 
example, the RMS error in irradiance patterns between 
high-resolution and low-resolution screens [cf. Coles et 
al, 1995]. If one splits the influence of a discrete 
phase screen into interspersed (pinhole-sampled) sub- 
screens and compares the irradiance patterns, some 
of the autocovariance terms that appear will relate 
to the present results. Furthermore, the relative impor- 
tance of the cross-covariance terms will likely be 
determined by the breakdown of S4tJ as an approxima- 
tion for £4. 

[40] Follow-on work should also address the practical 
use of the subsampling techniques. The canonical prob- 
lem is estimating lower-frequency S4 from higher- 
frequency phase or TEC measurements, often calibrated 
by S4 at the higher frequency. Subsampling curves 
themselves may also prove to be useful diagnostics. At 
the very least, they provide tests of screen generation 
algorithms that may skirt some of the variance issues of 
conventional spectral estimators. The form of the SDF 
determines the detailed shape of the subsampling curve 
and the curves with antialias filtering are particularly 
sensitive to the low-frequency portion of the SDF, i.e., 
behavior near the outer scale. Finally, another application 
could be deducing phase screen parameters, like drift 
velocity or distance, from a single GPS receiver using the 
subsampling curves and SH/AHTOSIS) as diagnostics. As 
illustrated in the section on GPS results, the assumed 
sample spacing (related to drift) influences S4l and the 
shape of the subsampling curve. 

Appendix A: Notes on Phase Screen 
"Re-Packing" Technique 

[41] As discussed in the text, the phase screen re- 
packing technique for pinhole subsampling calculations 
is based on the reordering of phase values illustrated 
in Figure 2. One concern is whether adjacent sub- 
screens significantly influence propagation below one 
other and skew the value of S4a from the value that 
might be calculated from the subscreens individually. 
Figure Al makes this comparison directly for repre- 
sentative cases and shows that the influence of adja- 
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Figure Al. Representative comparisons of subsampling curves for phase screen re-packing 
technique and direct subsampling of screen for cases with S41 = 0.75. (a) Subsampling curve for 
realization of phase screen with p = 2.5 as computed by re-packing technique, (b) Subsampling 
curve computed by direct subsampling for case 1 (Figure Ala), (c) Subsampling curve for phase 
screen with p = 3.5 as computed by re-packing technique, (d) Subsampling curve computed by 
direct subsampling for case 2 (Figure Ale). 

cent screens is not significant, even as c becomes 
large. In re-packing the screen and computing the S4 

across the entire screen, the ratios do tend toward the 
average of several of the individual subscreens; i.e., an 
ensemble average in the limit that the number of 
subscreens becomes large. 

[42] The averaging inherent in the re-packing calcu- 
lation raises a significant practical concern regarding 
the estimation of S4 from sparsely sampled phase 
screens, however. Specifically, in obtaining the ensem- 
ble average of the subsampling curves by the re- 
packing technique we have, in fact, used all of the 
original samples in the screen. If the variance in 
estimated S4 from one subscreen to the next is large 
then the usefulness of the subsampling technique is 
substantially diminished. Plots like Figures Alb and 
Aid provide confidence that the deviation of the 54 

ratio from its ensemble-averaged value is only a few 
percent for any given subscreen. More analysis is 
required but the simple empirical investigations illus- 
trated here are encouraging. 

[43] Separate concerns relate to other practical limita- 
tions of numerical experiments, such as size restrictions 
on the phase screen. In the numerical experiments that are 
not based on observations the starting screen contains 
enough points to cover 181 Fresnel radii prior to sub- 
sampling. We tested the sensitivity of the numerical 
experiments to the ratio of overall screen size to rF by 
varying the screen size. Doubling the starting screen size 
to 362rF and halving it to 9lrF did not significantly alter 
the subsampling curves. Also, as discussed in the text, we 
found it convenient to introduce an outer scale, £0 > rF, in 
the generation of the power law phase screens. Additional 
experimentation showed that as long as £0 remained 
greater than about 5rF the influence of the outer scale 
on the pinhole subsampling curve was minimal. 

Appendix B:  Aliasing Formulation for 
Power Law Screen 

[44] For a given value of <r, the integrals (14) and (15) 
over the aliased SDF can be broken into a parts, with the 
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q + (n-lWPsm2(q2), n odd 

q - ni\~" sin2 (q2), n even 

parts summed to obtain the desired result. The integrand 
of the nth part is 

n - \)h\~p sin2 (q2),     n odd 
D„ = < (Bl) 

where 8 = >/iip/(2a), the upper limit of integration, and n 
ranges from 1 to a. We integrate each of the D„ over the 
interval from 0 to 8 numerically and sum the a resulting 
values to obtain Pa using (15). 
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